Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Review Article
Authors: Cloutier, Guy; * | Qin, Zhao
Affiliations: Laboratory of Biomedical Engineering, Institut de recherches cliniques de Montréal and Department of Medicine, University of Montreal, Montreal, Quebec, Canada
Note: [*] Reprint requests to: Dr. Guy Cloutier, Laboratory of Biomedical Engineering, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Fax: 514-987-5705; E-mail: cloutig@ircm.umontreal.ca
Abstract: The objective of the present paper is to provide a detailed review of theoretical, experimental and clinical works aimed at understanding the scattering of ultrasound by red blood cells (RBC). The paper focuses on the role of biofluid mechanics and blood biorheology on the scattering mechanisms. The influence of RBC aggregation on the ultrasound backscattered power is specifically addressed. After a short introduction, the paper presents the theory of Rayleigh scattering and summarizes theoretical models on ultrasound backscattering by RBC. The particle, continuum and hybrid models are presented along with reported packing factors used to consider the orderliness in the spatial arrangement of RBC. Computer models of ultrasound backscattering by RBC are also presented in this section. In the second section, experimental factors affecting the ultrasound backscattered power from blood are presented. The influence of the volume of the scatterers, ultrasound frequency, hematocrit, orientation of the scatterers, flow turbulence, flow pulsatility, and concentration of fibrinogen and dextran is discussed. The third section focuses on the use of ultrasound to characterize RBC aggregation. Three aspects are reported: the shear rate dependence of the backscattered power, the “black hole” phenomenon, and the kinetics of RBC rouleau formation. The fourth section reports in vivo observations of the “smoke like” echo in mitral valve disease, and blood echogenicity and backscattered power in veins and arteries. In the last section, new areas of research, clinical applications of ultrasound backscattering, and areas of potential future developments are presented.
Keywords: Acoustic backscattering, blood echogenicity, spontaneous echo contrast, red blood cell aggregation, turbulence, power Doppler ultrasound
DOI: 10.3233/BIR-1997-34607
Journal: Biorheology, vol. 34, no. 6, pp. 443-470, 1997
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl