Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Adams, R.A. | Evans, S.-A. | Kooshesh, F. | Jones, J.C.
Affiliations: School of Molecular and Medical Biosciences, UWCC, PO Box 911, Cardiff CFl 3US, UK Fax: 1222874116; Tel: 1222874118
Abstract: The effect of temperature on the flow of diluted blood [Hct = 0.21], through 5 µm Nuclepore filters, is described by the Arrhenius equation with an energy of activation of 27.7 kJ/mol. Plasma, diluted with PBS, is almost three times less sensitive to temperature, with an energy of activation of 9.8 kJ/mol, while red cells are of intermediate sensitivity, with an energy of activation of 14.7 kJ/mol. The most sensitive elements to changes in temperature are leukocytes, with energies of activation of 31 kJ/mol and 35 kJ/mol for fast-flowing leukocytes (granulocytes and lymphocytes) and slow-flowing leukocytes (monocytes) respectively. Hence, the major determinants of the decline in filterability of blood through micropore filters are the leukocytes. This effect is compounded when blood is kept for 10 minutes or more at 10Âř C due to activation of granulocytes, which leads to permanent pore blocking when the affected blood is filtered at room temperature. The combination of increased passage time of leukocytes through peripheral areas at abnormally low temperatures and subsequent activation might influence the flow of blood in non-affected tissues. The effect of temperature on the filterability of red blood cells through 3 µm filters is not described by the Arrhenius equation and the deviations are seen as a gradual change of slope rather than a sharp break between two straight lines. The data are consistent with a gradual shift in rate limiting step away from the entry event into pores, which dominates at low temperature but becomes progressively less important at elevated temperatures. The changing parameter is probably the volume of the red cell, which is less important when flow is measured through 5 µm pores.
Keywords: Leukocytes, erythrocytes, filterability, temperature
DOI: 10.3233/BIR-1995-32609
Journal: Biorheology, vol. 32, no. 6, pp. 643-653, 1995
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl