Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Konstantopoulos, K.a | Wu, K.K.b | Udden, M.M.c | Bañez, E.I.d | Shattil, S.J.e | Hellums, J.D.a
Affiliations: [a] The Cox Laboratory for Biomedical Engineering, Rice University, Houston, TX, USA 77251-1892 | [b] Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA 77030 | [c] Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, USA 77030 | [d] Department of Pathology, Baylor College of Medicine, Houston, Texas, USA 77030 | [e] Hematology-Oncology Section, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
Abstract: The objective of this work was to evaluate quantitatively the effects of flow on platelet reactions using a flow cytometric technique. Whole blood was exposed to well defined, laminar shear stress in a cone-and-plate viscometer in the absence of added agonists. Blood specimens were fixed with formaldehyde and incubated with two monoclonal antibodies. Antibody 6D1, specific for platelet membrane glycoprotein Ib (GPIb), was used to identify and enumerate platelets and platelet aggregates on the basis of their characteristic forward scatter and 6D1-FITC fluorescence profilles. Anti-CD62 antibody, specific for the granule membrane protein-140 (GMP-140), was used to measure platelet activation. Results showed platelet aggregation increasing with increasing shear stress with marked increase in this response for a pathophysiological stress level of 140 dyn/cm2 and higher. This stress level also was the apparent threshold for formation of large platelet aggregates (“large” refers to particles larger than 10 µm in equivalent sphere diameter). These platelet responses to shear stress were insensitive to aspirin, but strongly inhibited by agents that elevate platelet cyclic adenosine monophosphate (cAMP) levels. Moreover, pre-incubation of whole blood with monoclonal antibodies that inhibit von Wille brand factor binding to GPIb or von Willebrand factor and fibrinogen binding to GPIIb/IIIa inhibited platelet aggregation. Aggregation induced by shear at 37°C was less in extent than at 23°C. At physiological shear stresses, whole blood was more susceptible to shear-induced platelet aggregation than platelet-rich plasma. This study reaffirms that flow cytometric methods have several important advantages in studies of shear effects on platelets, and extends the methodology to whole blood unaltered by cell separation methods.
Keywords: Flow cytometry, shear stress, platelet
DOI: 10.3233/BIR-1995-32106
Journal: Biorheology, vol. 32, no. 1, pp. 73-93, 1995
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl