Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Thurston, C.B.
Affiliations: Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
Abstract: Flow-induced changes in the red cell microstructure of human blood are identified from mechanical and optical evidence. On initiation of steady flow, a new microstructure develops as the shear strain increases through unit strain. This structure is identified with the formation of layers of red cells that slide on plasma layers (Thurston, 1989). At low shear rates, the cell layers are composed of aggregated cells, but at higher shear rates, the aggregates degrade to form thinner layers of oriented, compacted cells. The viscosity is determined by the hematocrit, the degree of compaction and viscosity within the cell layers, and the plasma viscosity. Degradation of cell aggregates is controlled by 1) the time required for the strain to increase by one unit (Δt1 = 1/shear rate) and 2) the dominant viscoelastic relaxation times of the red cell structures. Structures having relaxation times > Δt1 are degraded by cell disaggregation; when Δt1 is less than the shortest relaxation time of the layered cells, disaggregation and (cell and plasma) layer formation are nearly complete. Analyses of the non-Newtonian viscosity and cell layer characteristics are given for both normal and hardened cells.
Keywords: Blood, non-Newtonian, viscosity, viscoelasticity, shear strain
DOI: 10.3233/BIR-1994-31206
Journal: Biorheology, vol. 31, no. 2, pp. 179-192, 1994
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl