Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Dintenfass, Leopold
Affiliations: Department of Medicine, University of Sydney, N.S.W., Australia 2006
Note: [1] This communication was intended for the Stanley Mason Memorial Issue of Biorheology (26, Number 2, 1989). Unfortunately, due to several delays, it is only now being published.
Note: [] Accepted by: Editor H.L. Goldsmith
Abstract: Although the question whether the red cell is fluid or solid has been discussed since 17th century, it was the author’s measurement of the relative viscosity of blood in 1960’s that supplied the first direct evidence that the red cell interior is fluid. Furthermore, through his application of the equations of Taylor and, later, Oldroyd, to this problem, it became evident that, for the red cell to exhibit fluid-drop-like behavior, the membrane must also be fluid. This led to his concept of the red cell membrane as a complex two-phase structure (lipoprotein micelles and two-dimensional protein networks) which was similar to the one accepted nearly a decade later. The requirements of the theory of ideal emulsions that the shear stress be transmitted into the cell interior via low viscosity membrane, are met in the later work of other investigators using the concept of a tank-treading membrane having viscoelastic properties. This paper reviews the original work of the author which led to the development of an equation for the relative viscosity of blood as a function of volume concentration, C: ηr=(1−TkC)−2.5, valid at shear rates above 180 sec−1, in which T is the Taylor factor which gives a measure of fluidity of the red cell, and k is a plasma trapping factor. Both T and k increase with increasing rigidity of the red cell. Finally, the effect of the membrane viewed as a complex two-phase fluid, on the rheology of the red cell is discussed.
Keywords: red cell, fluid-drop-like behavior, ideal emulsion theory, blood viscosity equation, red cell rigidity parameter, plasma trapping factor, membrane structure, two-phase system, membrane tank treading
DOI: 10.3233/BIR-1990-27203
Journal: Biorheology, vol. 27, no. 2, pp. 149-161, 1990
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl