Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: McMillan, D.E. | Strigberger, J. | Utterback, N.G.
Affiliations: Hal B. Wallis Research Facility, Eisenhower Medical Center, Rancho Mirage, California 92270, U.S.A.
Note: [] Accepted by: Editor Y.C. Fung
Abstract: When the inner cylinder of a fluid-filled Couette viscometer is rotated rapidly, a vortical flow pattern develops when a dimensionless value referred to as the critical Taylor number (Tc) is reached. We have determined its magnitude in our viscometer for three Newtonian fluids and for blood at 37°C, using the inflection point of torque/RPM vs. RPM (sudden rise in apparent viscosity). Its position was identified by least squares line fitting. Because blood was studied, the viscosity used in Tc calculation was the apparent bob shear stress/shear rate ratio at the inflection marking vortical flow onset. For glycerol-water mixtures Tc was 41.8 ±0.3 (N=11), for propylene glycol 42.0 ±0.2 (N=14), for silicone oil 41.8 +0.2 (N=11). For healthy blood Tc was 40.7 ±0.9 (N=140). This evidence against blood’s increased resistance to flow instability was accompanied by a slower rate of rise in torque both above and below Tc compared to the three Newtonian fluids. Newtonian fluids and blood both developed wavy vortical flow at a rotation rate moderately higher than Tc. Blood resisted this unstable flow behavior more than the Newtonian fluids but it also experienced a slower rate of rise in torque with increasing rotation rate above the critical Taylor number. Shear-thinning is the simplest explanation for blood’s mildly altered Taylor vortex behavior; blood’s resistance to flow instability is otherwise not found to be sufficient to affect its flow stability in man.
Keywords: hemorheology, fluid mechanics, hydrodynamic instability, vorticity, blood
DOI: 10.3233/BIR-1987-24405
Journal: Biorheology, vol. 24, no. 4, pp. 401-410, 1987
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl