Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Workshop: Breaking Symmetry in Haemodynamics, London, UK, 23–24 April 2001
Article type: Research Article
Authors: Truskey, George A. | Barber, Kevin M. | Rinker, Kristina D.
Affiliations: Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
Note: [] Address for correspondence: George A. Truskey, Ph.D., Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Campus Box 90281, Durham, NC 27708‐0281, USA. Tel.: +1 919 660 5147; Fax: +1 919 660 5362; E‐mail: george.truskey@duke.edu.
Abstract: Adhesion of monocytes to arterial endothelium may contribute to the asymmetric distribution of atherosclerotic lesions. Possible mechanisms for adhesion in the relatively high shear stress environment found in arteries include greater monocyte deformation and/or more frequent penetration of microvilli through steric and charge barriers. In vivo, secondary flows generate forces acting normal to the endothelial cell surface. These forces may cause compression of the microvilli or enable cells to overcome steric or electrostatic barriers, increasing adhesion. To investigate this, we examined monocyte adhesion to activated endothelium in recirculating flow. Adhesion was characterized by short arrests in a narrow region on either side of the reattachment line. The median arrest time was longer than that observed at comparable shear stresses in a linear shear flow. The lifetimes of adhesion were analyzed using a model for multiple bond formation. For cells adhering near the reattachment line, the bond number per cell was greater than the value found for similar shear stresses under shear flow. Thus, multiple bond formation arising from greater normal forces in recirculating flow permits monocytes to adhere at higher shear stresses.
Keywords: Atherosclerosis, adhesion, endothelium, shear stress, monocyte, kinetics
Journal: Biorheology, vol. 39, no. 3-4, pp. 325-329, 2002
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl