Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Tamblyn, Cherry H. | Nordt, Frank J. | Swank, Roy L. | Zukoski IV, C.F. | Seaman, G.V.F.
Affiliations: Department of Neurology, University of Oregon Health Sciences Center Portland, Oregon 97201, U.S.A.
Note: [1] Third International Congress of Biorheology
Note: [] Accepted by: Editor Y.C.B. Fung
Abstract: Two promising methods of assessing the removal of blood microaggregates or other particulates from stored blood by microfilters, namely electronic particle size distribution analysis and screen filtration pressure (SFP) measurements, were compared. Microaggregate counts and size distributions have been difficult to quantitate because of a lack of reproducibility of the measurements. This problem has now been largely eliminated by the use of a red cell lysing solution containing hexadecyltrimethyl-ammonium bromide (CTAB), acetic acid and glutaraldehyde which permits destruction of the red cells yet stabilizes the microaggregate counts. As a consequence it has been possible to make a quantitative comparison with the screen filtration pressure method. The correlation between the SFP values obtained with screens having pore sizes of 20 × 20, 30 × 30, and 40 × 40 μ and the number of microaggregates measured electronically has been examined for outdated blood bank blood. The 30 μ screen was found to offer advantages over the 20 and 40 μm screens. Samples containing different relative concentrations of microaggregates were prepared by mixing various proportions of repeatedly filtered and unfiltered blood such that the maximum SFP was ⩽ 450 mm Hg using the 30 μ screen. When SFPs > 250 mm Hg were extrapolated from the straight line trace between ∼ 20 to 250 mm Hg, it was shown that the SFP values were linearly related to the relative quantity of filtrable material. A linear relationship was also observed between the relative quantity of microaggregates and the particles counted electronically. The simplicity and reproducibility of the SFP procedure offer advantages over electronic particle size distribution analysis for the evaluation of the performance of blood microfilters.
Keywords: blood, erythrocyte, microaggregate, microemboli, microfilter
DOI: 10.3233/BIR-1979-164-508
Journal: Biorheology, vol. 16, no. 4-5, pp. 339-346, 1979
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl