Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Thurston, George B.
Affiliations: Biomedical Engineering Program, Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, U.S.A.
Note: [1] Third International Congress of Biorheology Symposium on Recent Advances in Hemorheology I
Note: [] Accepted by: Guest Editors S. Chien and H. Meiselman
Abstract: The rheological properties of blood, nonNewtonian viscosity in steady flow, frequency dependence and shear rate dependence of viscoelasticity in oscillatory flow, and thixotropy, are brought together by a unifying concept. Rheological states are defined which separate nonequilibrium properties, such as thixotropy, from equilibrium properties, such as steady flow viscosity and sustained oscillatory flow viscoelasticity. It is considered that the aggregation of erythrocytes is the primary process governing the conditions of equilibrium. A generalized Maxwell model is developed to provide a basis for quantitative analysis of equilibrium properties. A shear rate dependent degradation function serves to adjust the model elements to the flow conditions. Characteristic relaxation times become significant rheological parameters for equilibrium viscosity and viscoelasticity while other characteristic times are important to thixotropy. Numerical data are evaluated for the several rheological properties by comparison with the theory using a computerized regression analysis. These determinations show that nonNewtonian viscosity and viscoelasticity can be calculated using the same numerical properties. Thus, the theory provides a rational framework into which several rheological tests of blood can be placed.
DOI: 10.3233/BIR-1979-16303
Journal: Biorheology, vol. 16, no. 3, pp. 149-162, 1979
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl