Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: 2nd International Symposium on Mechanobiology: Cartilage and Chondrocyte. Paris, France, April 2001
Article type: Research Article
Authors: Hunter, Christopher J. | Levenston, Marc E.; ;
Affiliations: Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA | Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA, USA
Note: [] Address for correspondence: Marc E. Levenston, School of Mechanical Engineering, Atlanta, GA 30332‐0405, USA. Tel.: +1 404 894 4219; Fax: +1 404 385 1397; E‐mail: marc.levenston@me.gatech.edu.
Abstract: This study examined the effects of mechanical compression on engineered cartilage in a novel hybrid culture system. Cylindrical holes were cut in discs of bovine articular cartilage and filled with agarose gels containing chondrocytes. These constructs were compressed in radiolabeled medium under static or oscillatory unconfined compression. Oscillatory compression at 1 Hz significantly stimulated synthesis above static control levels. Control experiments indicate that oscillatory compression does not stimulate freshly cast gels (without annuli), but does so after several weeks. This may be because physiologic fluid flow levels do not occur until sufficient extracellular matrix has accumulated. Finite element models predict minimal fluid flow in the gel core, and minimal differences in flow patterns between free and constrained gels. However, the models predict fluid pressures in constrained gels to be substantially higher than those in free gels. Our results suggest that pressure variations may influence synthesis of engineered cartilage matrices, with implications for construct development and post‐implantation survival.
Journal: Biorheology, vol. 39, no. 1-2, pp. 79-88, 2002
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl