Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Gijsen, F.J.H. | van de Vosse, F.N. | Janssen, J.D.
Affiliations: Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
Abstract: An experimental investigation of the wall shear stress distribution downstream of a backward‐facing step is carried out. Flow in this geometry is considered to be representative of flow in large and medium sized curved arteries and bifurcations. The wall shear stress distribution was determined by measuring the deformation of a gel layer, attached to the wall downstream of the step. Speckle pattern interferometry was applied to measure the deformation of the gel layer. The measured deformation, combined with the properties of the gel layer, served as an input for a finite element solid mechanics computation to determine the stress distribution in the gel layer. The wall shear stress, required to generate the measured deformation of the gel layer, was determined from these computations. A Newtonian buffer solution and a non‐Newtonian red blood cell suspension were used as measuring fluids. The deformation of the gel layer was determined for a Newtonian buffer solution to evaluate the method and to obtain the properties of the gel layer. Subsequently, the wall shear stress distribution for the non‐Newtonian red blood cell suspension was determined for three different flow rates. The inelastic non‐Newtonian Carreau–Yasuda model served as constitutive model for the red blood cell suspension. Using this model, the velocity and wall shear stress distribution were computed by means of a finite element fluid mechanics computation. From the comparison between the numerical and the experimental results, it can be concluded that wall shear stresses, induced by the red blood cell suspension, can be modeled accurately by employing a Carreau–Yasuda model.
Keywords: Wall shear stress, red blood cell suspension, backwards‐facing step flow, speckle interferometry, FEM simulation
Journal: Biorheology, vol. 35, no. 4-5, pp. 263-279, 1998
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl