Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Free Radicals in Biology and Medicine: From Inflammation to Biotechnology
Article type: Research Article
Authors: Yoshida, Yasukazu | Niki, Etsuo
Affiliations: National Institute of Advanced Industrial Science and Technology (AIST), Human Stress Signal Research Center, Ikeda 563-8577, Japan
Note: [] Address for correspondence: Yasukazu Yoshida, AIST, Human Stress Signal Research Center, 1-8-31 Midorigaoka, Ikeda 563-8577, Japan. Tel.: +81 72 751 8183; Fax: +81 72 751 9964; E-mail: yoshida-ya@aist.go.jp
Abstract: The biological role of lipid peroxidation products has continued to receive a great deal of attention not only for the elucidation of pathological mechanisms but also for their practical application to clinical use as bio-markers. In the last fifty years, lipid peroxidation has been the subject of extensive studies from the viewpoints of mechanisms, dynamics, product analysis, involvement in diseases, inhibition, and biological signaling. Lipid hydroperoxides are formed as the major primary products, however they are substrates for various enzymes and they also undergo various secondary reactions. In this decade, F2-isoprostanes from arachidonates and neuroprostanes from docosahexanoates have been proposed as bio-markers. Although these markers are formed by a free radical-mediated oxidation, the yields from the parent lipids are minimal. Compared to these markers, hydroperoxy octadecadienoates (HPODE) from linoleates and oxysterols from cholesterols are yielded by much simpler mechanisms from more abundant parent lipids in vivo. Recently, the method in which both free and ester forms of hydroperoxides and ketones as well as hydroxides of linoleic acid and cholesterol are measured as total hydroxyoctadecadienoic acid (tHODE) and 7-hydroxycholesterol (t7-OHCh), respectively, was proposed. The concentrations of tHODE and t7-OHCh determined by GC-MS analysis from physiological samples were much higher than that of 8-iso-prostagrandin F_{2α}. In addition to this advantage, hydrogen-donor activity of antioxidants in vivo could be determined by the isomeric-ratio of HODE (9- and 13-(Z,E)-HODE/9- and 13-(E,E)-HODE).
Keywords: Lipid peroxidation, oxidative stress, HODE, oxycholesterol
Journal: BioFactors, vol. 27, no. 1-4, pp. 195-202, 2006
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl