Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: HNE and Further Lipid Peroxidation Products
Article type: Research Article
Authors: Widmer, Rebecca; | Grune, Tilman;
Affiliations: Neuroscience Research Center, Medical Faculty (Charité), Humboldt University Berlin, Germany | Research Institute of Environmental Medicine, Düsseldorf, Germany
Note: [] Address for correspondence: Tilman Grune, Research Institute of Environmental Medicine, Heinrich Heine University, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany. Fax: +49 211 3389 222; E-mail: Tilman.Grune@uni-duesseldorf.de
Abstract: Iron is one of the trace elements playing a key role in the normal brain metabolism. An excess of free iron on the other hand is catalyzing the iron-mediated oxygen radical production. Such a condition might be a harmful event leading perhaps to serious tissue damage and degeneration. Therefore, during evolution a complex iron sequestering apparatus developed, minimizing the amount of redox-reactive free iron. However, this system might be severely disturbed under pathophysiological conditions including hypoxia or anoxia. Since little is known about the non-transferrin-mediated iron metabolism of the brain during anoxia/reoxygenation, we tested the ability of the microglial cell line RAW 264.7 to take up iron independently of transferrin under various oxygen concentrations. Microglial cells are thought to be the major player in the maintenance of the extracellular homeostasis in the brain. Therefore, we investigated the iron metabolism of microglial cells employing radiolabeled ferric chloride. We tested the uptake of iron under normoxic, anoxic and postanoxic conditions. Furthermore, the amount of ferritin was measured by immunoblotting. We were able to show that iron enters the microglial cell line in the absence of extracellular transferrin under normoxic, anoxic and postanoxic conditions. Interestingly, the amount of ferritin is decreasing in the early reoxygenation phase. Therefore, we concluded that microglia is able to contribute to the brain iron homeostasis under anoxic and postanoxic conditions.
Keywords: Anoxia, reoxygenation, iron, microglia, ferritin, uptake
Journal: BioFactors, vol. 24, no. 1-4, pp. 247-254, 2005
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl