Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Hedia, H.S.; | Aldousari, S.M. | Abdellatif, A.K. | Fouda, N.
Affiliations: Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia | Department of Production Engineering, Faculty of Engineering, Mansoura University, Mansoura, Egypt
Note: [] Address for correspondence: H.S. Hedia, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia. E-mail: hassanhedia87@yahoo.com
Abstract: One of the most frequent complications of total hip replacement (THR) is aseptic loosening of femoral component which is primarily due to changes of post-operative stress distribution pattern with respect to intact femur. Stress shielding of the femur is known to be a principal factor in aseptic loosening of hip replacements. Many designers show that a stiff stem shields the surrounding bone from mechanical loading causing stress shielding. Others show that reducing stem stiffness promotes higher proximal interface shear stress which increases the risk of proximal interface failure. Therefore, the task of this investigation is to solve these conflicting problems appeared in the cemented total hip replacement. The finite element method and optimization technique are used in order to find the optimal stem material which gives the optimal available stress distribution between the proximal medial femoral bone and the cement mantle interfaces. The stem is designed using the concept of functionally graded material (FGM) instead of using the conventional most common used stem material. The results showed that there are four feasible solutions from the optimization runs. The best of these designs is to use a cemented stem graded from titanium at the upper stem layer to collagen at the lower stem layer. This new cemented stem design completely eliminates the stress shielding problem at the proximal medial femoral region. The stress shielding using the cemented functionally graded stem is reduced by 98% compared to titanium stem.
Keywords: Hip replacement, functionally graded material, interface shear stress, stress shielding, finite element, optimization
DOI: 10.3233/BME-140962
Journal: Bio-Medical Materials and Engineering, vol. 24, no. 3, pp. 1575-1588, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl