Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Ying | Ng, Soon Seng | He, Tao | Fang, Ning | Neoh, K.G. | Kang, E.T. | Chen, Wei Ning | Chan, Vincent;
Affiliations: Center of Biotechnology, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore | Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
Note: [] Address for correspondence: Vincent Chan, Center of Biotechnology, School of Chemical and Biomedical Engineering, Nanyang Technological University, 639798 Singapore. E-mail: mvchan@ntu.edu.sg
Abstract: Thermo-responsive poly(N-isopropylacrylamide) (PIPAAm) with a particular lower critical solution temperature (LCST) have been applied for the non-invasive harvesting of confluent cell layer. Until now, the effect of adhesive ligand on the biophysical responses of cells during cell layer harvesting from PIPAAm has not been elucidated. In this study, the deadhesion kinetics of smooth muscle cells (SMC) on various adhesive ligands immobilized on PIPAAm were investigated. Firstly, the formation of elastin (EL), laminin (LA), hyaluronic acid (HA) and collagen (CL) coating on PIPAAm surfaces were validated with XPS, microBCA assay and AFM. It was shown that EL was most effective in driving cell retraction on PIPAAm surface. Moreover, the highest rate of initial SMC deadhesion on EL-PIPAAm was driven by the formation of stress fibers. Interestingly, HA was most effective in preventing initial SMC detachment from PIPAAm surface in comparison with EL, LA and CL. Also, the adhesion energy of SMC on HA-PIPAAm remained constant, which was two times and six times higher than that on CL-PIPAAm and EL-PIPAAm, respectively from 20 min onward. Overall, the results reported herein pave the way for the engineering of the invasive regeneration/recovery of cells/tissue with adhesive ligand.
Keywords: Thermosensitive polymer, cell adhesion, adhesive ligand, deadhesion
DOI: 10.3233/BME-130948
Journal: Bio-Medical Materials and Engineering, vol. 24, no. 2, pp. 1433-1445, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl