Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Frontiers in Biomedical Engineering and Biotechnology – Proceedings of the 2nd International Conference on Biomedical Engineering and Biotechnology, 11–13 October 2013, Wuhan, China
Article type: Research Article
Authors: Sun, Lin; ; | Xu, Jiucheng
Affiliations: International WIC Institute, Beijing University of Technology, Beijing, China | College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
Note: [] Corresponding author. E-mail: linsun.htu@gmail.com.
Abstract: Feature selection is a key problem in tumor classification and related tasks. This paper presents a tumor classification approach with neighborhood rough set-based feature selection. First, some uncertainty measures such as neighborhood entropy, conditional neighborhood entropy, neighborhood mutual information and neighborhood conditional mutual information, are introduced to evaluate the relevance between genes and related decision in neighborhood rough set. Then some important properties and propositions of these measures are investigated, and the relationships among these measures are established as well. By using improved minimal-Redundancy-Maximal-Relevancy, combined with sequential forward greedy search strategy, a novel feature selection algorithm with low time complexity is proposed. Finally, several cancer classification tasks are demonstrated using the proposed approach. Experimental results show that the proposed algorithm is efficient and effective.
Keywords: Feature selection, neighborhood rough set, mutual information, tumor classification
DOI: 10.3233/BME-130865
Journal: Bio-Medical Materials and Engineering, vol. 24, no. 1, pp. 763-770, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl