Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Frontiers in Biomedical Engineering and Biotechnology – Proceedings of the 2nd International Conference on Biomedical Engineering and Biotechnology, 11–13 October 2013, Wuhan, China
Article type: Research Article
Authors: Wong, Derek F. | Chao, Lidia S.; | Zeng, Xiao Dong
Affiliations: Department of Computer and Information Science, University of Macau, Av. Padre Tomás Pereira Taipa, Macau S.A.R., China
Note: [] Corresponding author. E-mail: lidiasc@umac.mo.
Abstract: Discretization of a continuous-valued symptom (attribute) in medical data set is a crucial preprocessing step for the medical classification task. This paper proposes a supportive attribute – assisted discretization (SAAD) model for medical diagnostic problems. The intent of this approach is to discover the best supportive symptom that correlates closely with the continuous-valued symptom being discretized and to conduct the discretization process using the significant supportive information that is provided by the best supportive symptom, because we hypothesize that a good discretization scheme should rely heavily on the interaction between a continuous-valued attribute and both its supportive attribute and the class attribute. SAAD can consider each continuous-valued symptom differently and intelligently, which allows it to be capable of minimizing the information lost and the data uncertainty. Hence, SAAD results in higher classification accuracy. Empirical experiments using ten real-life datasets from the UCI repository were conducted to compare the classification accuracy achieved by several prestigious classifiers with SAAD and other state-of-the-art discretization approaches. The experimental results demonstrate the effectiveness and usefulness of the proposed approach in enhancing the diagnostic accuracy.
Keywords: Discretization, data preprocessing, supportive attribute interdependence, bioinformatics, medical classification
DOI: 10.3233/BME-130810
Journal: Bio-Medical Materials and Engineering, vol. 24, no. 1, pp. 289-295, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl