Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Papers from the 5th Scientific Meeting on Cartilage Engineering, February 2010, Nancy, France
Article type: Research Article
Authors: Merceron, C. | Portron, S. | Masson, M. | Fellah, B.H.; ; | Gauthier, O.; | Lesoeur, J. | Chérel, Y. | Weiss, P. | Guicheux, J.; | Vinatier, C.;
Affiliations: INSERM U791, LIOAD, Group “STEP”, Nantes University, Nantes, France | National Veterinary School, CRIP – Experimental Surgery Department, Nantes, France | Graftys SA, Aix en Provence, France | INRA UMR703, National Veterinary School, Nantes, France
Note: [] Address for correspondence: Jérôme Guicheux, INSERM U791, Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire (LIOAD), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 1, France. Tel.: +33 240412919; Fax: +33 240083712; E-mail: jerome.guicheux@inserm.fr.
Abstract: Articular cartilage does not repair itself spontaneously. To promote its repair, the transfer of stem cells from adipose tissue (ATSC) using an injectable self-setting cellulosic-hydrogel (Si-HPMC) appears promising. In this context, the objective of this work was to investigate the influence of in vitro chondrogenic differentiation of ATSC on the in vivo cartilage formation when combined with Si-HPMC. In a first set of experiments, we characterized ATSC for their ability to proliferate, self renew and express typical mesenchymal stem cell surface markers. Then, the potential of ATSC to differentiate towards the chondrogenic lineage and the optimal culture conditions to drive this differentiation were evaluated. Real-time RT-PCR and histological analysis for sulphated glycosaminoglycans and type II collagen revealed that 3-dimensional culture and hypoxic condition favored ATSC chondrogenesis regarding mRNA expression level and the corresponding proteins production. In order to assess the phenotypic stability of chondrogenically-differentiated ATSC, real-time RT-PCR for specific terminal chondrogenic markers and alkaline phosphatase activity assay were performed. In addition to promote chondrogenesis, our culture conditions seem to prevent the terminal differentiation of ATSC. Histological examination of ATSC/Si-HPMC implants suggested that the in vitro chondrogenic pre-commitment of ATSC in monolayer is sufficient to obtain cartilaginous tissue in vivo.
Keywords: Articular cartilage, tissue engineering, human mesenchymal stem cells, hydrogel, hypoxia
DOI: 10.3233/BME-2010-0627
Journal: Bio-Medical Materials and Engineering, vol. 20, no. 3-4, pp. 159-166, 2010
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl