Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ueyama, Keishi; | Jones, James W. | Varvitsiotis, Poseidon S. | LaFuente, Javier A. | Thornby, John I. | Raskin, Steven A. | Beall, Jr., Arthur C.
Affiliations: Baylor College of Medicine, Department of Surgery, Veterans Affair Medical Center, Surgical Service, Houston, Texas, USA
Note: [] Address correspondence: Keishi Ueyama, M.D., Ph.D., Fukui Cardiovascular Center Surgery, Shinbo 2-228, Fukui, 910, Japan. Tel.: +81-776-54-5660, Fax: +81-776-53-2132.
Abstract: Heat exchange methods must be efficient in order to minimize the patient's pump time. However, comparisons of heat exchangers have been rare. Therefore, the in vivo functions of the most popular, currently available heat exchangers, Sarns, Cobe, Medtronics Maxima, and an experimental model manufactured by Haemonetics were compared. Thirty-two pigs weighing between 63–74 kg were placed on cardiopulmonary bypass with right atrial and ascending aorta cannulation through a right thoracotomy. Thermocouples were placed in the pump tubing before and after the heat exchangers, in the water line before and after the heat exchangers, in the inlet and outlet line of the pump, and the esophagus, brain, bladder, rectum, liver, myocardium, and tympanic membranes of the pigs. They were cooled until the bladder temperature was reduced to 14°C, and maintained at that temperature for 10 minutes. Rewarming was begun until the bladder temperature became 37°C. The pump flow was maintained between 50–60 ml/kg/min with standard ventilation. Cobe, Sarns, Maxima, and Haemonetics heat exchangers were tested and their function determined by comparing the time necessary for rewarming. The Haemonetics heat exchanger required a significant shorter time than the others to rewarm the pigs to normal bladder temperature (Cobe 82.0 ± 12.0, Sams 80.3 ± 15.4, Maxima 89.0± 13.9, Haemonetics 68.7 ± 13.4, p < 0.05). The principal advantage was seen at the lowest temperatures between the Haemonetics experimental heat exchanger and the other heat exchangers. No statistically significant superiority was seen at higher temperatures. The current heat exchangers are relatively comparable but improved performance is possible with available technology.
Keywords: Heat exchanger, Cardiopulmonary Bypass (CPB), extracorporeal circulation, hypothermia, rewarming
DOI: 10.3233/BME-1996-6306
Journal: Bio-Medical Materials and Engineering, vol. 6, no. 3, pp. 191-197, 1996
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl