Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: A Selection of Papers from the International Symposium on Advanced Bio-Materials and Engineering '93 (ISABE'93)
Article type: Research Article
Authors: Ujihira, Masanobu | Aizawa, Naoki | Tanishita, Kazuo
Affiliations: Department of Mechanical Engineering and Institute of Biomedical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku Yokohama Kanagawa 223, Japan
Abstract: The purpose of this study is to find the feasibility of preservation of large cell and tissue by maintaining the undercooled state in a freezing process, leading to avoiding the growth of ice crystals in the intracellular space, which causes destruction of cell and tissue. The fertilized killifish egg was employed to test biological tissue. The cooling system was equipped with Peltier devices and able to decrease the temperature of the test section to −50°C. The cooling rate could be regulated by the electric current supplied to the Peltier devices. In the temperature range 0 to −40°C, the morphology of fertilized killifish egg was observed under a microscope with a cooling rate from 0.1 to 10°C/min. The damage rate to the egg in the intracellular undercooled state was evaluated by hatching rate. As a result, intracellular undercooled states were observed in the freezing process with the extracellular undercooling and the extracellular freezing. Extracellular undercooling proves to preserve the egg, and extracellular freezing frequently damages the egg. Thus the cryopreservation of biological material is achieved by maintaining the undercooled state until the temperature of −40°C, then is instantly frozen by the liquid nitrogen to avoid the growth of ice crystals. The maintaining of the stable undercooled state of biological material is requisite for the initial phase in the freezing process. Therefore, dehydration or maintaining the extracellular stable undercooled state should be desirable to maintain the intracellular undercooled state for cryopreservation of biological material.
Keywords: cryopreservation, undercooled state, dehydration, killifish egg, damage
DOI: 10.3233/BME-1994-4207
Journal: Bio-Medical Materials and Engineering, vol. 4, no. 2, pp. 115-125, 1994
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl