Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: 2nd International Conference on New Biomedical Materials, 5–8 April 2003, Cardiff, Wales, UK
Article type: Research Article
Authors: Grimes, Marguerita | Pembroke, J.T. | McGloughlin, Tim;
Affiliations: Biomedical Engineering Research Centre, Department of Mechanical & Aeronautical Engineering, University of Limerick, Ireland | Department of Chemical & Environmental Science, University of Limerick, Ireland
Note: [] Corresponding author: Dr. Tim McGloughlin, MSSI Building, University of Limerick, Castletroy, Limerick, Ireland. Tel.: +353 61 202369; Fax: +353 61 202944; E‐mail: tim.mcgloughlin@ul.ie.
Abstract: SIS (small intestinal submucosa) is a 3D extracellular matrix (ECM) material of porcine origin. It has a complex composition predominantly composed of collagen type I. SIS is rapidly absorbed, supports early and abundant new vessel growth, and serves as a template for the reconstructive remodelling of several body tissues. Currently SIS products are sterilised using ethylene oxide, gamma irradiation and e‐beam irradiation. It is not known how they affect the materials properties such as structure, mechanical strength and biocompatibility. This study investigated the influence of each sterilisation method on the biocompatibility and biodegradation of SIS using L929 mouse fibroblasts. SIS samples were sterilised by each of the above methods under standard conditions. The samples were subjected to hydrolytic degradation conditions for specific periods of time. All sterilisation methods resulted in an increase in the rate of sample degradation. The study indicated that over time e‐beam irradiation caused the greatest % weight loss. Applying sample extracts to L929 mouse fibroblasts assessed the biocompatibility of the degradation products. The % cellular protein and % metabolic activity were then assessed using the BCA assay and MTT assay, respectively. All SIS samples caused an increase in both cellular protein production and metabolic activity. Initially samples sterilised by ETO had the greatest effect but this decreased after 28 days. Unsterile samples were found to have a slower more prolonged influence. It is thought that the components released may include extractable growth factors and further studies are required to confirm this.
Keywords: Small intestinal submucosa, tissue engineering, sterilisation, biocompatibility, biodegradability
Journal: Bio-Medical Materials and Engineering, vol. 15, no. 1-2, pp. 65-71, 2005
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl