Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: 2nd International Conference on New Biomedical Materials, 5–8 April 2003, Cardiff, Wales, UK
Article type: Research Article
Authors: Minuth, Will W. | Schumacher, Karl | Strehl, Raimund
Affiliations: Department of Molecular and Cellular Anatomy, University of Regensburg, D‐93053 Regensburg, Germany
Note: [] Corresponding author: Prof. Dr. Will W. Minuth, Department of Molecular and Cellular Anatomy, University of Regensburg, Universitätstrasse 31, D‐93053 Regensburg, Germany. Tel.: +49 (0) 941 943 2876, Fax: +49 (0) 941 943 2868; E‐mail: will.minuth@vkl.uni‐regensburg.de.
Abstract: In the organism epithelia perform perfect barrier functions. Strong rheological and mechanical influences constitute the normal environment of this tissue throughout life. Most epithelia are exposed to different fluids at the luminal and basal sides. To obtain realistic information about tissue development in modern biomaterial testing and tissue engineering it is necessary to mimik the natural environment of epithelia. Cultured cells are brought in contact with an artificial extracellular matrix to determine whether proper development into a functional epithelium occurs. As under natural conditions the cultures have to withstand mechanical and fluid stress over a prolonged period of time in close contact to a selected biomaterial. However, development of tissue‐specific features such as polarization, tightness and transport under in vitro conditions will only occur, if the biomaterial and the culture conditions support tissue development. Leakage, edge damage and pressure differences during culture have to be avoided so that the natural functions of the growing epithelium can develop. Our aim is to generate functional epithelia derived from renal explants containing stem cells, which are microsurgically isolated and placed into specific O‐ring carriers for optimal handling. The cells develop in combination with a collagenous matrix from an embryonic into a functional collecting duct (rCD) epithelium. To achieve optimal culture conditions the tissue is placed in a gradient culture container. A typical environment can be simulated by superfusing different culture media at the luminal and basal sides. Within days epithelia growing inside the gradient container build up a physiological barrier, which is maintained during the whole culture period. The described method allows to investigate the influence of new biomaterials over prolonged periods of time.
Keywords: Stem cells, kidney, epithelia, biomaterial testing, tissue engineering, gradient perfusion culture
Journal: Bio-Medical Materials and Engineering, vol. 15, no. 1-2, pp. 51-63, 2005
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl