Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Haher, Thomas R.; | Ottaviano, Danielle | DeFrancis, Jason G. | Merola, Andrew | Valdevit, Antonio
Affiliations: Department of Surgery, Lutheran Medical Center, USA | Department of Orthopaedics, St. Vincent's Medical Center, USA | SUNY Health Science Center at Brooklyn, USA
Note: [] Corresponding author: Thomas Haher, MD, Department of Surgery, Lutheran Medical Center, 150 55th Street, Brooklyn, NY 11220, USA. E‐mail: Tomhaher@aol.com.
Abstract: The in vitro biomechanical models using a cadaveric spine specimen have long been used in understanding normal and abnormal functions of spines as well as for strength and stability testing of the spine specimen or spinal construct. Little effort has been made to describe the similarities or differences between UHMWPE and cadaveric models. Eight cadaveric lumbar spines were harvested generating six FSU and three corpectomy models. Six UHMWPE blocks were fabricated to form FSU and corpectomy models. All were tested intact, with posterior instrumentation, and with anterior instrumentation consisting of Moss‐Miami 4.0 mm stainless steel rods, uni‐axial stainless steel screws and DePuy Harm's cages. All models were tested in axial compression. The cadaveric model and UHMPWE model yielded axial stiffness values of comparable magnitude with respect to instrumentation applied using the posterior approach (P>0.05). Under an FSU configuration, only in the case of anterior instrumentation without the addition of a Harm's cage did both the cadaveric and UHMPWE models provide comparable axial stiffness results (P>0.05). While in vitro cadaveric models are considered the gold standard for biomechanical testing of the spine, the data suggests that under specific approaches and surgical models UHMWPE can be used to infer mechanical performance of instrumentation in cadaveric material.
Keywords: UHMWPE, stiffness, loading, corpectomy, FSU
Journal: Bio-Medical Materials and Engineering, vol. 14, no. 1, pp. 79-85, 2004
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl