Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kobayashi, Masanori; | Oka, Masanori
Affiliations: Brigham and Women's Hospital, Harvard Medical School, USA | Institute for Frontier Medical Sciences, Kyoto University, Japan
Note: [] Corresponding author: Masanori Kobayashi, M.D., Ph.D.,75 Peterborough Street, #515, Boston, MA, USA.
Abstract: The purpose of this study was to observe and compare the effect of the behavior of different lubricating surfaces, including articular cartilage and several artificial joint materials, under the physiological loading by confocal laser scanning microscopy (CLSM) to clarify the mechanism of lubrication in natural joints and subsequently improve the quality of artificial joints. In our experiment, even with considerable loading, natural articular cartilage exhibited a synovial fluid area and an area of direct and solid contact. In the region between these two areas, a liquid crystal layer was observed. On the other hand, the materials used for artificial joints (metal and polyethylene, which are now in use, and polyvinyl alcohol‐hydrogel polymer which is being developed), did not exhibit neither a clear fluid pool area nor the intermediary area with liquid crystal formation. These results suggest that natural articular cartilage surface has a particular characteristic which builds up a synovial pooling area and liquid crystal formation in the third area by interaction with macromolecules in synovial fluid under the loading condition. These characteristics give natural articular cartilage its excellent lubricative function. To improve the quality of artificial joints, the characteristics of the implant material surface and the synovial macromolecules must be considered.
Keywords: Confocal laser scanning microscopy (CLSM), lubrication mechanism, liquid crystal, articular cartilage, artificial joint material
Journal: Bio-Medical Materials and Engineering, vol. 13, no. 4, pp. 429-437, 2003
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl