Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Dong, Qiannian; * | Yuan, Hui-Ling; * | Qian, Jia-Jia | Zhang, Cai-Yun; ** | Chen, Wei-Dong
Affiliations: School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230038, P.R. China
Correspondence: [**] Corresponding author. E-mail: cyzhang6@ustc.edu.cn.
Note: [*] These authors contributed equally.
Abstract: Nanosuspensions technique is an important tool to enhance the saturation solubility and dissolution velocity of poorly soluble drugs. Trans-resveratrol (t-Res) with extensive pharmacological effects was severely restricted by poor solubility and short biological half-life. In this study, anti-solvent precipitation was employed to development trans-resveratrol nanosuspensions (t-Res NS) with PVPK30 as stabilizer. The physicochemical properties, in vitro release and in vivo pharmacokinetics of t-Res NS were investigated. The mean particle size, zeta potential, encapsulation efficiency and drug loading of t-Res NS prepared by the optimal prescription were 96.9 nm, −20.4mV, 78% and 28.1%, respectively. The morphology of t-Res nanoparticles was spherical indicated by SEM with amorphous phase verified by XRD and DSC. The t-Res NS present a good physical stability as well as enhanced chemical stability. Compared to crude drug, the in vitro dissolution rate of t-Res NS was increased with fitting Higuchi equation (Q=0.3215t1/2+0.0070). The in vivo pharmacokinetic test in rats showed that the AUC0∼t of t-Res NS (559.4 μg/mL·min) was about 3.6-fold higher than that of t-Res solution. Meanwhile, the MRT of t-Res nanosuspensions was longer than that of t-Res solution. These results suggested that NS may be a potentially nanocarrier for clinical delivery of t-Res.
Keywords: Nanosuspensions, trans-resveratrol, anti-solvent precipitation, in vitro dissolution, in vivo pharmacokinetics
DOI: 10.3233/BME-181729
Journal: Bio-Medical Materials and Engineering, vol. 29, no. 3, pp. 333-345, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl