Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Islam, Md. Monirul | Wang, Xiaodu; *
Affiliations: Department of Mechanical Engineering, University of Texas at San Antonio, USA
Correspondence: [*] Corresponding author: Xiaodu Wang, PhD, Department of Mechanical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA. Tel.: (210) 458-5565; Fax: (210) 458-6504; E-mail: xiaodu.wang@utsa.edu.
Abstract: Coring is a surgical procedure in bone biopsy retrieval and dental/orthopaedic procedures, which may cause thermal damage to bone tissues adjacent to the coring zone. This study was performed to determine the temperature rise in bone by coring using a semi-empirical thermocouple approach. Concurrently, a custom-made dynamometer was used to measure the cutting and thrust forces during coring bovine cortical bone samples. The experimental results indicated that the cutting force, cutting speed, and depth of cut significantly affect the temperature rise in the cutting zone during coring process. In addition, acute temperature rises in the cutting zone occurred when the cutting speed exceeded threshold levels. The limited capacity of heat dissipation during coring is most likely responsible for such a sharp temperature rise with increasing cutting speed. Moreover, it was observed that the maximum size of potential thermal damage zone could reach to 3.0 mm in depth from the surface of the coring hole, assuming that thermal damage would occur when the temperature is greater than 47°C. Thus, proper cutting conditions need to be selected to avoid the potential thermal damage to bone during the coring procedures.
Keywords: Bone, coring, thermal damage, cutting temperature, cutting force
DOI: 10.3233/BME-171667
Journal: Bio-Medical Materials and Engineering, vol. 28, no. 2, pp. 201-211, 2017
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl