Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ozeki, K.a; * | Aoki, H.b
Affiliations: [a] Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan | [b] International Apatite Co., Ltd, 12-9, Misaki-cho 2-Chome, Chiyoda-ku, Tokyo 101-0061, Japan
Correspondence: [*] Corresponding author. Tel.: +81 294 38 5040; Fax: +81 294 38 5047; E-mail: kazuhide.ozeki.365@vc.ibaraki.ac.jp.
Abstract: Removal of radioactive substances, such as cesium (Cs) and strontium (Sr), has become an emerging issue after the Fukushima Daiichi Nuclear Power Plant Disaster. To assess the possibility that hydroxyapatite (HA) and zeolites can be used for removal of radioactive substances, the adsorption capacities of Cs and Sr on the HA and a zeolite were investigated. The influence of Fe ions on Cs and Sr adsorption on the HA and the zeolite was also evaluated, because Fe ions are the most effective inhibitor of Cs adsorption on the zeolite. In the Cs adsorption process on the HA and the zeolite, the zeolite showed a higher adsorption ratio than the HA, and the maximum sorption capacity of the zeolite was calculated as 196 mg/g, whereas the HA showed a higher Sr adsorption ratio than the zeolite. The maximum sorption capacity of Sr on the HA was 123 mg/g. Under coexistence with Fe, Cs adsorption on the zeolite decreased with increasing Fe concentration, reaching 2.0 ± 0.8% at 0.1 M Fe concentration. In contrast, Cs adsorption on the zeolite was improved by adding the HA. In the case of coexistence of the HA, the Cs adsorption on the mixture of the HA and the zeolite was 52.4% ± 3.6 % at 0.1 M Fe concentration, although Cs adsorption on the HA alone was quite low. In the Fe adsorption processes of the HA and the zeolite, the HA exhibited a maximum sorption capacity of 256 mg/g, which was much higher than that of the zeolite (111 mg/g). The high affinity of Fe on the HA contributes to the improvement of the deteriorated Cs adsorption on the zeolite due to Fe ions.
Keywords: Hydroxyapatite, zeolite, adsorption, cesium, strontium, radioactive substance
DOI: 10.3233/BME-161584
Journal: Bio-Medical Materials and Engineering, vol. 27, no. 2-3, pp. 227-236, 2016
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl