You are viewing a javascript disabled version of the site. Please enable Javascript for this site to function properly.
Go to headerGo to navigationGo to searchGo to contentsGo to footer
In content section. Select this link to jump to navigation

Influence of the hypothalamic paraventricular nucleus (PVN) on heart rate variability (HRV) in rat hearts via electronic lesion

Previous literatures have indicated that hypothalamic paraventricular nucleus (PVN) neurons are important for regulating the level of sympathetic and vagal nervous activity. Sympathovagal balance is closely related to heart rate variability (HRV). However, it still requires further elucidation regarding the effect of PVN on HRV by regulating sympathovagal balance. To detect the influence of the PVN on HRV, we evaluated the changes in time domain (including standard deviation of the R-R intervals (SDNN), and the root mean square of successive differences (RMSSD)) and frequency domain (including low frequency (LFnu), high frequency (HFnu) and the ratio of LF/HF) in HRV upon appropriate electronic stimulation, and lesions on the PVN of the rat in vivo. Cardiac vagal modulation was evaluated by HFnu; sympathetic modulation was evaluated by LFnu. Sympathovagal balance was evaluated by LF/HF and SDNN. Upon electronic stimulating (less than 0.6 mA) to the PVN of rats, we found that LFnu and HFnu changed correspondingly but recovered after the stimulation. When the PVN of the rats was injured, the RR intervals were enhanced with the rats’ unilaterally or bilaterally injured PVN, especially the bilateral lesion. Meanwhile, LFnu, LF/HF and SDNN decreased gradually, accompanied with an increase of HFnu levels. So these PVN changes may indicate alterations of the sympathovagal balance.