You are viewing a javascript disabled version of the site. Please enable Javascript for this site to function properly.
Go to headerGo to navigationGo to searchGo to contentsGo to footer
In content section. Select this link to jump to navigation

Feasibility of compressive follower load on spine in a simplified dynamic state: A simulation study

Abstract

This study investigated that the spinal MFs can create compressive follower loads (CFLs) in the lumbar spine in a dynamic state. Three-dimensional optimization and finite element (FE) models of the spinal system were developed and validated using reported experimental data. An optimization analysis was performed to determine the MFs that create CFLs in the lumbar spine in various sagittal postures from 10° extension to 40° flexion. Optimization solutions for the MFs, CFLs, and follower load path (FLP) location were feasible for all studied postures. The FE predictions demonstrated that MFs which created CFLs along the base spinal curve connecting the geometrical centers or along a curve in its vicinity (within anterior or posterior shift by 2 mm) produced stable deformation of the lumbar spine in the neutral standing and flexed postures, whereas the MFs which created the smallest CFLs resulted in unstable deformation. For extended postures, however, finding CFLs creating MFs that produce stable deformation of the extended spine was not possible. The results of this study support the hypothesis that the spinal muscles may stabilize the spine via the CFL mechanism.