Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Herrero, M.A.; ; | Lacey, A.A.; | Velazquez, J.J.L.;
Affiliations: Departamento de Matemática Aplicada, Facultad de Ciencias Matemáticas, Universidad Complutense, 28040 Madrid, Spain | Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
Note: [] Correspondence to: M.A. Herrero, Departamento de Matemática Aplicada, Facultad de Ciencias Matemáticas, Universidad Complutense, 28040 Madrid, Spain.
Note: [] Partially supported by ClCYT Grant PB90-0235, EEC Contract SC1-0019-C, and SERC Grant GR/D/73096.
Note: [] Partially supported by EEC Contract SC1-0019-C.
Note: [] Partially supported by ClCYT Grant PB90-0235, EEC Contract SC1-0019-C, and SERC Grant GR/D/73096.
Abstract: Consider the problem (1) ut=uxx+δeu, if 0<x<1,t>0, (2) u(0,t)=asin ωt, u(1,t)=0 for t≥0, (3) u(x,0)=u0(x), where a>0,ω>0, and u0(x) is a continuous and bounded real function. If we replace the first condition in (2) by u(0,t)=0, it is known that the corresponding Cauchy-Dirichlet problem (P0) is characterized by the existence of a critical parameter δFK such that (i) If δ>δFK, every solution of (P0) blows up in finite time, and (ii) If δ<δFK there exist global solutions of (P0) for some choices of u0(x). A similar parameter δc=δc(a,ω) exists for problem (1)-(3) and is such that δc≤δFK. We obtain here an asymptotic formula for δc(a,ω) when a or ω (or both) are arbitrarily large.
DOI: 10.3233/ASY-1994-9101
Journal: Asymptotic Analysis, vol. 9, no. 1, pp. 1-22, 1994
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl