Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Fonseca, Irene | Popovici, Cristina
Affiliations: Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Abstract: The \[$\varGamma(L^{1}(\varOmega;\mathbb{R}^{d}))$-limit of the sequence \[J_{\varepsilon}(u):=\frac{1}{\varepsilon}E_{\varepsilon}(u),\] where Eε is the family of anisotropic singular perturbations Eε(u):=∫Ωf(x,u(x),ε∇u(x)) dx of a non-convex functional of vector-valued functions E(u):=∫Ωf(x,u(x),∇u(x)) dx is obtained where f is a non-negative energy density satisfying f(x,u,0)=0 if and only if u∈{a,b}.
Keywords: [TeX:] \[$\varGamma$-convergence, phase transitions, singular perturbations, double-well potential
Journal: Asymptotic Analysis, vol. 44, no. 3-4, pp. 299-325, 2005
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl