Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Morillas, Francisco | Valero, José
Affiliations: Universidad Politécnica de Valencia, ETSI Geodésica, Cartográfica y Topográfica, Camino de Vera, s/n, 46022 Valencia, Spain | Universidad Miguel Hernández, Centro de Investigación Operativa, Avda. Universidad s/n, Elche (Alicante), 03202, Spain E-mail: jvalero@umh.es
Abstract: In this paper we prove the existence of a compact global attractor for a reaction–diffusion equation on \[$\mathbb{R}^{N}$. We do not assume that the nonlinear term is differentiable (just continuous) and, also, we do not guarantee the uniqueness of solutions of the Cauchy problem. Besides, the growth and dissipative conditions are different from the ones used in previous papers on the topic. An application is given to the Fitz–Hugh–Nagumo system, which models the transmission of signals across axons.
Keywords: reaction–diffusion equations, set-valued dynamical system, global attractor, unbounded domain
Journal: Asymptotic Analysis, vol. 44, no. 1-2, pp. 111-130, 2005
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl