Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Glangetas, L.
Affiliations: Laboratoire d'analyse numérique, tour 55–65, Université Pierre et Marie Curie, 4, place Jussieu, 75252 Paris Cedex 05, France
Abstract: We consider solutions (uε,vε,cε) of a system of two nonlinear differential equations −u″ε+cεu′ε=fε(uε)vε, −Λv″ε+cεv′ε=−fε(uε)vε on R with the boundary conditions uε(−∞)=0, uε(+∞)=1, vε(−∞)=1, vε(+∞)=0. We investigate the asymptotic behavior of (uε,vε,cε) as ε→0 and fε(u)(1−u) behaves as a Dirac distribution. This singular limit corresponds to some combustion models (planar flame propagations) for high activation energy asymptotics.
DOI: 10.3233/ASY-1992-5403
Journal: Asymptotic Analysis, vol. 5, no. 4, pp. 317-342, 1992
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl