Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Falconi, Riccardoa | Griso, Georgesb; * | Orlik, Juliaa
Affiliations: [a] Fraunhofer ITWM, 67663 Kaiserslautern, Germany | [b] Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions (LJLL), F-75005 Paris, France
Correspondence: [*] Corresponding author. E-mail: griso@ljll.math.upmc.fr.
Abstract: This paper is focused on the asymptotic behavior of sequences of functions, whose partial derivatives estimates in one or more directions are highly contrasted with respect to the periodic parameter ε. In particular, a direct application for the homogenization of a homogeneous Dirichlet problem defined on an anisotropic structure is presented. In general, the obtained results can be applied to thin structures where the behavior is different according to the observed direction.
Keywords: Periodic unfolding method, homogenization, anisotropic Sobolev spaces, Dirichlet problem
DOI: 10.3233/ASY-221796
Journal: Asymptotic Analysis, vol. 132, no. 3-4, pp. 383-407, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl