Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Dittrich, Jaroslava; b | Exner, Pavela; b | Kühn, Christianc | Pankrashkin, Konstantind; *
Affiliations: [a] Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences, Řež near Prague, Czechia | [b] Doppler Institute for Mathematical Physics and Applied Mathematics, Czech Technical University, Prague, Czechia. E-mails: dittrich@ujf.cas.cz, exner@ujf.cas.cz | [c] Institut für Numerische Mathematik, Technische Universität Graz, Graz, Austria. E-mail: kuehn@tugraz.at | [d] Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Orsay, France. E-mail: konstantin.pankrashkin@math.u-psud.fr
Correspondence: [*] Corresponding author: Konstantin Pankrashkin, Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France. E-mail: konstantin.pankrashkin@math.u-psud.fr.
Abstract: Let S⊂R3 be a C4-smooth relatively compact orientable surface with a sufficiently regular boundary. For β∈R+, let Ej(β) denote the jth negative eigenvalue of the operator associated with the quadratic form H1(R3)∋u↦∭R3|∇u|2dx−β∬S|u|2dσ, where σ is the two-dimensional Hausdorff measure on S. We show that for each fixed j one has the asymptotic expansion Ej(β)=−β24+μjD+o(1)as β→+∞, where μjD is the jth eigenvalue of the operator −ΔS+K−M2 on L2(S), in which K and M are the Gauss and mean curvatures, respectively, and −ΔS is the Laplace–Beltrami operator with the Dirichlet condition at the boundary of S. If, in addition, the boundary of S is C2-smooth, then the remainder estimate can be improved to O(β−1logβ).
Keywords: singular Schrödinger operator, δ-interaction, strong coupling, eigenvalue
DOI: 10.3233/ASY-151341
Journal: Asymptotic Analysis, vol. 97, no. 1-2, pp. 1-25, 2016
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl