Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Alves, Claudianor O.a | Simsen, Jacsonb; * | Simsen, Mariza S.b
Affiliations: [a] Unidade Acadêmica de Matemática, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil. E-mail: coalvesbr@yahoo.com.br | [b] Instituto de Matemática e Computação, Universidade Federal de Itajubá, Itajubá, MG, Brazil. E-mails: jacson@unifei.edu.br, mariza@unifei.edu.br
Correspondence: [*] Corresponding author: Jacson Simsen, Instituto de Matemática e Computação, Universidade Federal de Itajubá, 37500-903 Itajubá, MG, Brazil. E-mail: jacson@unifei.edu.br.
Abstract: We study the asymptotic behavior of parabolic p(x)-Laplacian problems of the form ∂uλ∂t−div(Dλ|∇uλ|p(x)−2∇uλ)+a|uλ|p(x)−2uλ=B(uλ) in L2(Rn), where n⩾1, p∈L∞(Rn) such that 2<p−:=ess infp(x)⩽p(x)⩽p+:=ess supp(x), Dλ∈L∞(Rn), ∞>M⩾Dλ(x)⩾σ>0 a.e. in Rn, λ∈[0,∞), B:L2(Rn)→L2(Rn) is a globally Lipschitz map and a:Rn→R is a non-negative continuous function such that there exists R1>0 with {x∈Rn;a(x)=0}⊂BR1(0), infx∈Rn∖BR1(0)a(x)>0, and ∫Rn∖BR1(0)1a(x)2/(p(x)−2)dx<+∞. We also study the sensitivity of the problem according to the variation of the diffusion coefficients.
Keywords: p(x)-Laplacian, attractors, unbounded domains
DOI: 10.3233/ASY-141281
Journal: Asymptotic Analysis, vol. 93, no. 1-2, pp. 51-64, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl