Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Bueno, H. | Ercole, G.;
Affiliations: Departamento de Matemática, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30.123.970, Brazil. E-mails: hamilton@mat.ufmg.br, grey@mat.ufmg.br
Note: [] Corresponding author. E-mail: grey@mat.ufmg.br
Abstract: Let p>1 and denote, respectively, by up and h(Ωa,b), the p-torsion function and the Cheeger constant of the annulus $\Omega_{a,b}=\{x\in\mathbb{R}^{N}\dvt a<\vert x\vert <b\}$, N>1. Thus, up is the solution of the p-torsional creep problem \[\cases{-\operatorname{div}\bigl(\vert \nabla u\vert ^{p-2}\nablau\bigr)=1&in $\Omega_{a,b}$,\cru=0&on $\partial\Omega_{a,b}$}\] and \[h(\Omega_{a,b}):=\min \biggl\{\frac{\vert \partial E\vert }{\vert E\vert }\dvt E\subset\overline{\Omega_{a,b}}\biggr\},\] where |∂E| and |E| denote, respectively, the (N−1)-dimensional Lebesgue perimeter of ∂E in $\mathbb{R}^{N}$ and the N-dimensional Lebesgue volume of the smooth subset $E\subset\overline{\Omega_{a,b}}$. We prove that \[\lim_{p\rightarrow1^{+}}\Vert u_{p}\Vert _{\infty}^{1-p}=\lim_{p\rightarrow1^{+}}\Vert \nabla u_{p}\Vert _{\infty}^{1-p}=N\frac{b^{N-1}+a^{N-1}}{b^{N}-a^{N}}=\frac{\vert \partial\Omega_{a,b}\vert }{\vert \Omega_{a,b}\vert }\] and combine this fact with a characterization of the Cheeger constant that we proved in a previous paper, to give a new proof of the calibrability of Ωa,b, that is, $h(\Omega_{a,b})=\frac{\vert \partial\Omega_{a,b}\vert }{\vert \Omega_{a,b}\vert }$. Moreover, we prove that up is concave and satisfies lim p→1+(up(x)/‖up‖∞)=1, uniformly in the set a+ε≤|x|≤b−ε, for all ε>0 sufficiently small. Our results rely on estimates for mp, the radius of the sphere on which up assumes its maximum value. We derive these estimates by combining Pohozaev's identity for the p-torsional creep problem with a kind of l'Hôpital rule for monotonicity.
Keywords: annulus, Cheeger constant, p-Laplacian, p-torsion functions, torsional creep problem
DOI: 10.3233/ASY-141275
Journal: Asymptotic Analysis, vol. 92, no. 3-4, pp. 235-247, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl