Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Gómez, D. | Pérez, E.; | Shaposhnikova, T.A.
Affiliations: Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria, Santander, Spain | Departamento de Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, Santander, Spain | Department of Differential Equations, Moscow State University, Moscow, Russia
Note: [] Corresponding author: E. Pérez, Departamento de Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, 39005 Santander, Spain. E-mail: meperez@unican.es.
Abstract: Let uε be the solution of the Poisson equation in a domain periodically perforated along a manifold γ=Ω∩{x1=0}, with a nonlinear Robin type boundary condition on the perforations (the flux here being O(ε−κ)σ(x,uε)), and with a Dirichlet condition on ∂Ω. Ω is a domain of Rn with n≥3, the small parameter ε, that we shall make to go to zero, denotes the period, and the size of each cavity is O(εα) with α≥1. The function σ involving the nonlinear process is a C1(Ω¯×R) function and the parameter κ∈R. Depending on the values of α and κ, the effective equations on γ are obtained; we provide a critical relation between both parameters which implies a different average of the process on γ ranging from linear to nonlinear. For each fixed κ a critical size of the cavities which depends on n is found. As ε→0, we show the convergence of uε in the weak topology of H1 and construct correctors which provide estimates for convergence rates of solutions. All this allows us to derive convergence for the eigenelements of the associated spectral problems in the case of σ a linear function.
Keywords: boundary homogenization, porous media, nonlinear flux, spectral analysis
DOI: 10.3233/ASY-2012-1116
Journal: Asymptotic Analysis, vol. 80, no. 3-4, pp. 289-322, 2012
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl