Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Miranda, Pablo | Raikov, Georgi;
Affiliations: Departamento de Matemáticas, Facultad de Ciencias, Universidad de Chile, Santiago de Chile, Chile. E-mail: pmirandar@ug.uchile.cl | Departamento de Matemáticas, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile. E-mail: graikov@mat.puc.cl
Note: [] Corresponding author: Georgi Raikov, Departamento de Matemáticas, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago de Chile, Chile. E-mail: graikov@mat.puc.cl.
Abstract: We consider the unperturbed operator H0:=(−i∇−A)2+W, self-adjoint in L2(R2). Here A is a magnetic potential which generates a constant magnetic field b>0, and the edge potential W=W¯ is a 𝒯-periodic non-constant bounded function depending only on the first coordinate x∈R of (x,y)∈R2. Then the spectrum σ(H0) of H0 has a band structure, the band functions are b𝒯-periodic, and generically there are infinitely many open gaps in σ(H0). We establish explicit sufficient conditions which guarantee that a given band of σ(H0) has a positive length, and all the extremal points of the corresponding band function are non-degenerate. Under these assumptions we consider the perturbed operators H±=H0±V where the electric potential V∈L∞(R2) is non-negative and decays at infinity. We investigate the asymptotic distribution of the discrete spectrum of H± in the spectral gaps of H0. We introduce an effective Hamiltonian which governs the main asymptotic term; this Hamiltonian could be interpreted as a 1D Schrödinger operator with infinite-matrix-valued potential. Further, we restrict our attention on perturbations V of compact support. We find that there are infinitely many discrete eigenvalues in any open gap in the spectrum σ(H0), and the convergence of these eigenvalues to the corresponding spectral edge is asymptotically Gaussian.
Keywords: magnetic Schrödinger operators, spectral gaps, eigenvalue distribution
DOI: 10.3233/ASY-2012-1103
Journal: Asymptotic Analysis, vol. 79, no. 3-4, pp. 325-345, 2012
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl