Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Dimassi, Mouez; | Zerzeri, Maher
Affiliations: LAGA (UMR CNRS 7539), Univ. Paris 13, F-93430 Villetaneuse, France. E-mails: {dimassi, zerzeri}@math.univ-paris13.fr
Note: [] Corresponding author. E-mail: dimassi@math.univ-paris13.fr.
Abstract: In the large coupling constant limit, we obtain an asymptotic expansion in powers of μ−1/δ of the derivative of the spectral shift function corresponding to the pair (Pμ=P0+μW(x),P0=−Δx+V(x)), where W(x) is positive, W(x)~w0(x/|x|)|x|−δ near infinity for some δ>n and w0∈C∞(Sn−1;R+). Here Sn−1 is the unite sphere of the space Rn and μ is a large parameter. The potential V is real-valued, smooth and periodic with respect to a lattice Γ in Rn.
Keywords: periodic Schrödinger operator, spectral shift function, asymptotic expansions, limiting absorption theorem
DOI: 10.3233/ASY-2011-1062
Journal: Asymptotic Analysis, vol. 75, no. 3-4, pp. 233-250, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl