Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Donato, Patrizia | Gaudiello, Antonio | Sgambati, Luciana
Affiliations: UFR des Sciences‐Mathématiques, UPRESA CNRS 6085, Site Colbert, Université de Rouen, 76821 Mont Saint Aignan Cedex, France | Dipartimento di Matematica ed Appl.“R. Caccioppoli”, Complesso Monte S. Angelo, Edificio T, Università di Napoli Federico II, 80125 Napoli (via Cintia), Italy | D.I.I.M.A., Facoltá di Scienze, Via S. Allende, Universitá di Salerno, 84081 Baronissi, Salerno, Italy
Abstract: Consider the domain \varOmega_\varepsilon =\varOmega -T_\varepsilon obtained by removing a closed set T_\varepsilon of \varepsilon‐periodic holes of size \varepsilon from a bounded open set \varOmega. We study the homogenization of the nonlinear problem \cases{-{\rm div}(A({x/\varepsilon})Du_\varepsilon)+ \gamma u_\varepsilon = H( {x/\varepsilon}, u_\varepsilon , Du_\varepsilon )& $\hbox{in }\varOmega_\varepsilon ,$\cr (A({x/\varepsilon})Du_\varepsilon)\cdot\underline\nu =0 &$\hbox{on } \Ncurpartial T_\varepsilon ,$\cr u_\varepsilon =0&$\hbox{on } \Ncurpartial \varOmega,$\cr u_\varepsilon\in H^1(\varOmega_\varepsilon )\cap L^\infty(\varOmega_\varepsilon ),&\cr} where H( y,s,\xi) is ]0,1[^n‐periodic in y and has quadratic growth with respect to \xi. We prove that the linear part of the limit problem is the homogenized matrix of the linear problem and the nonlinear part is given by H^0( u, Du), where H^0 is defined by H^0( s,\xi) =\int_{]0,1[^n-\overline T} H ( y,s,C(y)\xi)\, {\rm d}y \quad \forall( s,\xi)\in\NBbbR\times\NBbbR^n , C( {\cdot/\varepsilon}) being the corrector matrices of the linear problem and T the reference hole.
Journal: Asymptotic Analysis, vol. 16, no. 3-4, pp. 223-243, 1998
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl