Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Greijer, A.E.; | de Jong, M.C. | Scheffer, G.L. | Shvarts, A. | van Diest, P.J. | van der Wall, E.
Affiliations: Departments of Pathology and Medical Oncology, VU University Medical Centre, Amsterdam, The Netherlands | Departments of Pathology and Division of Internal Medicine and Dermatology, UMCU, Utrecht, The Netherlands
Note: [] Corresponding author: Astrid E. Greijer, PhD, Department of Pathology, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands. Tel.: +31 20 4444049; Fax: +31 20 4442964; E‐mail: ae.greijer@vumc.nl.
Abstract: Hypoxia has clinically been associated with resistance to chemotherapy. The aim of this study was to investigate whether hypoxia induces resistance to doxorubicin and mitoxantrone, two common drugs in cancer treatment, in MCF‐7 breast cancer cells, and SW1573 non‐small lung cancer cells. In addition, the role of drug transporters P‐gp, BCRP and MRP1 was analysed. Hypoxia induced resistance in MCF‐7 cells to mitoxantrone shifted the IC50 value from 0.09 μM (±0.01) to 0.54 μM (±0.06) under hypoxia, whereas survival of MCF‐7 and SW1573 cells in the presence of doxorubicin was not altered. Accumulation of mitoxantrone and daunorubicin, a doxorubicin fluorescent homologue, appeared to be 5.3 and 3.2 times lower in MCF‐7 cells, respectively. Cytotoxicity assays showed no increased functionality of the drug transporters P‐gp, BCRP and MRP1 under hypoxia. In addition, protein levels of these drug transporters were not changed. Medium of the MCF‐7 cells became more acidic under hypoxia thereby causing a decreased uptake of mitoxantrone. Hypoxia induces mitoxantrone resistance in MCF‐7 cells not mediated by the three major MDR transporters. Hypoxia‐induced acidification may cause this resistance by decreased cellular uptake together with a lowered cytotoxicity due to pH‐dependent topoisomerase type II activity.
Keywords: Acidification, hypoxia, doxorubicin, mitoxantrone, multiple drugs resistance
Journal: Analytical Cellular Pathology, vol. 27, no. 1, pp. 43-49, 2005
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl