Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: 19th RCRA International Workshop on “Experimental evaluation of algorithms for solving problems with combinatorial explosion”
Article type: Research Article
Authors: Miller, Christian; | Marin, Paolo | Becker, Bernd
Affiliations: Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 051, 79110 Freiburg i. Br., Germany. E-mails: millerc@tf.uni-freiburg.de, paolo@tf.uni-freiburg.de, becker@tf.uni-freiburg.de
Note: [] Corresponding author. E-mail: millerc@tf.uni-freiburg.de
Abstract: SAT solving is an indispensable core component of numerous formal verification tools and has found widespread use in industry, in particular when using it in an incremental fashion, e.g., in Bounded Model Checking (BMC). On the other hand, for some applications SAT formulas are not expressive enough, whereas a description via Quantified Boolean Formulas (QBF) is much more adequate, for instance when dealing with partial designs. Motivated by the success of incremental SAT, in this paper we explore various approaches to solve QBF problems in an incremental fashion and thereby make this technology usable as a core component of BMC. Firstly, we realized an incremental QBF solver based on the state-of-the-art QBF solver QuBE: Taking profit from the reuse of some information from previous iterations, the search space can be pruned, in some cases, to even less than a quarter. However, the need for preprocessing QBF formulas prior to the solving phase, that in general cannot be paired with incremental solving because of the non-predictable elimination of variables in the future incremental steps, posed the question of incremental QBF preprocessing. In this context we present an approach for retaining the QBF formula being preprocessed while extending its clauses and prefix incrementally. This procedure results in a significant size reduction of the QBF formulas, hence leading to a reduced solving time. As this may come together with a high preprocessing time, we analyze various heuristics to dynamically disable incremental preprocessing when its overhead raises over a certain threshold and is not compensated by the reduced solving time anymore. For proving the efficacy of our methods experimentally, as an application we consider BMC for partial designs (i.e., designs containing so-called blackboxes which represent unknown parts). Here, we disprove realizability, that is, we prove that an unsafe state is reachable no matter how the blackboxes are implemented. We examine all these incremental approaches from both the point of view of the effectiveness of the single procedure and the benefits that a range of QBF solvers can take from it. On a domain of partial design benchmarks, engaging incremental QBF methods significant performance gains over non incremental BMC can be achieved.
Keywords: Incremental QBF, BMC, partial design verification, blackbox
DOI: 10.3233/AIC-140633
Journal: AI Communications, vol. 28, no. 2, pp. 283-307, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl