Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Other
Authors: Martínez-Álvarez, Francisco
Affiliations: Department of Computer Science, Pablo de Olavide University of Seville, Seville, Spain. E-mail: fmaralv@upo.es
Abstract: This work proposes a novel general-purpose forecasting algorithm. It first extracts patterns from time series using the information provided by certain clustering techniques, which are applied as a first step of the approach. Moreover, the occurrence of data with especially unexpected values (outliers) is also addressed in this work. To deal with these outliers, a new hybrid methodology has been proposed, by inserting and adapting an existing approach based on the discovery of frequent episodes in sequences in the general scheme of prediction.
Keywords: Time series, forecasting, clustering, outliers
DOI: 10.3233/AIC-2010-0485
Journal: AI Communications, vol. 24, no. 1, pp. 97-98, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl