Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Yin | Zhuang, Yueting | Wu, Jiangqin | Zhang, Liang
Affiliations: College of Computer Science, Zhejiang University, Hangzhou 310027, China. E-mails: {zhangyin98, yzhuang, wujq}@cs.zju.edu.cn, cddb.zhang@gmail.com
Abstract: Nowadays some recommender system researchers have already been engaging multi-criteria that model possible attributes of the item to generate the improved recommendations. However, the statistical machine learning methods successful in the single-rating recommender system have not been investigated in the context of multi-criteria ratings. In this paper, we propose two types of multi-criteria probabilistic latent semantic analysis algorithms extended from the single-rating version. First, the mixture of multi-variate Gaussian distribution is assumed to be the underlying distribution of multi-criteria ratings of each user. Second, we further assume the mixture of the linear Gaussian regression model as the underlying distribution of multi-criteria ratings of each user, inspired by the Bayesian network and linear regression. The experiment results on the Yahoo!Movies ratings data set show that the full multi-variate Gaussian model and the linear Gaussian regression model achieve a stable performance gain over other tested methods.
Keywords: Collaborative filtering, multi-criteria, latent semantic analysis, linear Gaussian regression
DOI: 10.3233/AIC-2009-0446
Journal: AI Communications, vol. 22, no. 2, pp. 97-107, 2009
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl