Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Other
Authors: Tian, Yonghong
Affiliations: Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China E-mail: yhtian@ict.ac.cn
Abstract: The relational structure is an important source of information, which is often ignored by the traditional statistical learning methods. Thus this thesis focuses on how to explicitly exploit such relational information in statistical learning tasks so as to build more effective and more robust models. The main methodology used in the thesis is derived from context-based modeling and analysis. Several models and algorithms are investigated from different viewpoints of context, thereby demonstrating the general applicability of context-based statistical relational learning.
Keywords: Statistical relational learning, context modeling, contextual dependency networks, linkage semantic kernels
Journal: AI Communications, vol. 19, no. 3, pp. 291-293, 2006
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl