Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Huang, Hongboa; b; * | Xu, Longfeia | Zheng, Yaolina | Yan, Xiaoxua
Affiliations: [a] Computer School, Beijing Information Science & Technology University, Beijing, China | [b] Institute of Computing Intelligence, Beijing Information Science & Technology University, Beijing, China
Correspondence: [*] Corresponding author. E-mail: hhb@bistu.edu.cn.
Abstract: Human action recognition has been widely used in fields such as human–computer interaction and virtual reality. Despite significant progress, existing approaches still struggle with effectively integrating hierarchical information and processing data beyond a certain frame count. To address these challenges, we introduce the Multi-AxisFormer (MAFormer) model, which is organized in terms of spatial, temporal, and channel dimensions of the action sequence, thereby enhancing the model’s understanding of correlations and intricate structures among and within features. Drawing on the Transformer architecture, we propose the Cross-channel Spatio-temporal Aggregation (CSA) structure for more refined feature extraction and the Multi-Axis Attention (MAA) module for more comprehensive feature aggregation. Moreover, the integration of Rotary Position Embedding (RoPE) boosts the model’s extrapolation and generalization abilities. MAFormer surpasses the known state-of-the-art on multiple skeleton-based action recognition benchmarks with the accuracy of 93.2% on NTU RGB+D 60 cross-subject split, 89.9% on NTU RGB+D 120 cross-subject split, and 97.2% on N-UCLA, offering a novel paradigm for hierarchical modeling in human action recognition.
Keywords: Deep learning, human action recognition, transformer, RoPE
DOI: 10.3233/AIC-240260
Journal: AI Communications, vol. 37, no. 4, pp. 735-749, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl