Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Gan, Linga | Tan, Xiaodonga; * | Hu, Liuhuib
Affiliations: [a] School of Computer, Chongqing University of Posts and Telecommunications, Chongqing, China | [b] School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
Correspondence: [*] Corresponding author. E-mail: s210201085@stu.cqupt.edu.cn.
Abstract: The majority of existing rotating target detectors inherit the horizontal detection paradigm and design the rotational regression loss based on the inductive paradigm. But the loss design limitation of the inductive paradigm makes these detectors hardly detect effectively tiny targets with high accuracy, particularly for large-aspect-ratio objects. Therefore, in view of the fact that horizontal detection is a special scenario of rotating target detection and based on the relationship between rotational and horizontal detection, we shift from an inductive to a deductive paradigm of design to develop a new regression loss function named Gauss–Wasserstein scattering (GWS). First, the rotating bounding box is transformed into a two-dimensional Gaussian distribution, and then the regression losses between Gaussian distributions are calculated as the Wasserstein scatter; By analyzing the gradient of centroid regression, centroid regression is shown to be able to adjust gradients dynamically based on object characteristics, and small targets requiring high accuracy detection rely on this mechanism, and more importantly, it is further demonstrated that GWS is scale-invariant while possessing an explicit regression logic. The method is performed on a large public remote sensing dataset DOTA and two popular detectors and achieves a large accuracy improvement in both large aspect ratio targets and small targets detection compared to similar methods.
Keywords: Rotational regression loss, deductive paradigm, Gaussian distribution, Wasserstein scatter
DOI: 10.3233/AIC-230135
Journal: AI Communications, vol. 37, no. 1, pp. 169-183, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl