Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Sun, Ninga; * | Shen, Pengfeib | Ye, Xiaolingb | Chen, Yifeia | Cheng, Xipingc | Wang, Pingpingd | Min, Jieb
Affiliations: [a] School of Automation, Wuxi University, Wuxi 214105, China | [b] School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China | [c] Fire and Rescue Detachment, Wuxi, Jiangsu, China | [d] Fire Research Institute, Shanghai, China
Correspondence: [*] Corresponding author. E-mail: 001764@cwxu.edu.cn.
Abstract: Fire monitoring of fire-prone areas is essential, and in order to meet the requirements of edge deployment and the balance of fire recognition accuracy and speed, we design a lightweight fire recognition network, Conflagration-YOLO. Conflagration-YOLO is constructed by depthwise separable convolution and more attention to fire feature information extraction from a three-dimensional(3D) perspective, which improves the network feature extraction capability, achieves a balance of accuracy and speed, and reduces model parameters. In addition, a new activation function is used to improve the accuracy of fire recognition while minimizing the inference time of the network. All models are trained and validated on a custom fire dataset and fire inference is performed on the CPU. The mean Average Precision(mAP) of the proposed model reaches 80.92%, which has a great advantage compared with Faster R-CNN. Compared with YOLOv3-Tiny, the proposed model decreases the number of parameters by 5.71 M and improves the mAP by 6.67%. Compared with YOLOv4-Tiny, the number of parameters decreases by 3.54 M, mAP increases by 8.47%, and inference time decreases by 62.59 ms. Compared with YOLOv5s, the difference in the number of parameters is nearly twice reduced by 4.45 M and the inference time is reduced by 41.87 ms. Compared with YOLOX-Tiny, the number of parameters decreases by 2.5 M, mAP increases by 0.7%, and inference time decreases by 102.49 ms. Compared with YOLOv7, the number of parameters decreases significantly and the balance of accuracy and speed is achieved. Compared with YOLOv7-Tiny, the number of parameters decreases by 3.64 M, mAP increases by 0.5%, and inference time decreases by 15.65 ms. The experiment verifies the superiority and effectiveness of Conflagration-YOLO compared to the state-of-the-art (SOTA) network model. Furthermore, our proposed model and its dimensional variants can be applied to computer vision downstream target detection tasks in other scenarios as required.
Keywords: Target detection, Conflagration-YOLO, light weigh, real-time detection
DOI: 10.3233/AIC-230094
Journal: AI Communications, vol. 36, no. 4, pp. 361-376, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl