Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Immanuel, Rajeswari Rajesh | Sangeetha, S.K.B.
Article Type: Research Article
Abstract: Human emotions are the mind’s responses to external stimuli, and due to their dynamic and unpredictable nature, research in this field has become increasingly important. There is a growing trend in utilizing deep learning and machine learning techniques for emotion recognition through EEG (electroencephalogram) signals. This paper presents an investigation based on a real-time dataset that comprises 15 subjects, consisting of 7 males and 8 females. The EEG signals of these subjects were recorded during exposure to video stimuli. The collected real-time data underwent preprocessing, followed by the extraction of features using various methods tailored for this purpose. The study …includes an evaluation of model performance by comparing the accuracy and loss metrics between models applied to both raw and preprocessed data. The paper introduces the EEGEM (Electroencephalogram Ensemble Model), which represents an ensemble model combining LSTM (Long Short-Term Memory) and CNN (Convolutional Neural Network) to achieve the desired outcomes. The results demonstrate the effectiveness of the EEGEM model, achieving an impressive accuracy rate of 95.56%. This model has proven to surpass the performance of other established machine learning and deep learning techniques in the field of emotion recognition, making it a promising and superior tool for this application. Show more
Keywords: EEG signal, emotion, CNN, LSTM, ensemble learning, feature extraction
DOI: 10.3233/JIFS-237884
Citation: Journal of Intelligent & Fuzzy Systems, vol. 47, no. 1-2, pp. 143-154, 2024
Authors: Zheng, Z. | Gao, J.B. | Weng, Z.
Article Type: Research Article
Abstract: The body size parameter of cattle is an important index reflecting the growth and development and health condition of cattle. The traditional manual contact measurement is not only a large workload and difficult to measure, but also prone to problems such as affecting the normal life habits of cattle. In this paper, we address this problem by proposing a contactless body size measurement method for cattle based on machine vision. Firstly, the cattle is confined to a fixed space using a position-limiting device, and images of the body of the cattle are taken from three directions: top, left, and right, …using multiple cameras. Secondly, the image is segmented using a fuzzy clustering algorithm based on neighborhood adaptive local spatial information improvement, and the image is processed to extract the contour images of the top view and side view. The key points of body measurements were extracted using interval division and curvature calculation for the side view images, and the key point information was extracted using skeleton extraction and pruning for the top view images, which realized the measurements of body height(BH), rump height(RH), body slanting length(BSL), and abdominal circumference(AC) parameters of the cattle. The correlation between body size and weight data obtained by contactless methods was investigated and the modeled using one-factor linear regression, one-factor nonlinear regression, multivariate stepwise regression, RBF network fitting, BP neural network fitting, support vector machine, and particle swarm optimization-based support vector machine methods, respectively. Information on body size parameters was collected from 137 cattles, and the results showed that the maximum errors between the measured and actual values of BH, RH, BSL and AC were 5.0%, 4.4%, 3.6%, and 5.5%, respectively. Correlation of BH, RH, BSL and AC with weight obtained by non-contact methods was > 0.75. The BH parameter can be selected in the single-factor growth monitoring. The multi-body scale can reflect the growth status of cattle more comprehensively, in which RH, BSL and AC are important detection parameter; the multi-factor nonlinear model can reflect the growth characteristics of cattle more comprehensively. The contactless measurement method proposed in the paper can effectively improve the work efficiency and reduce the stress reaction of cattle, which is a long-term and effective monitoring method, and is of great significance in promoting accurate and welfare cattle rearing. Show more
Keywords: Image processing, body size measurement, fuzzy clustering, non-contact measurement, cattle weight estimation
DOI: 10.3233/JIFS-238016
Citation: Journal of Intelligent & Fuzzy Systems, vol. 47, no. 1-2, pp. 155-167, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl